Avenida Houston 230Verizon 5G reach is perhaps twice as far as expected, including with obstacles (NLOS.) That's the independent conclusion of Michael Thelander and team testing two live Verizon cells in Houston,

"Who would have thought a millimeter wave signal in an area 100% blocked from the serving cell tower by the surroundings would still be capable of supporting good data speeds?" they exclaim. "Millimeter wave signals are far more resilient than we expected, even at distances exceeding several thousand feet. Tree foliage, passing school buses, buildings, parked cars, balding heads, and glass impacted the received signal, but the resultant signals were still capable of delivering meaningful data rates – thanks in part to the 400 MHz radio channel. Verizon can deploy 800 MHz channels in some markets." The results were generally good up to 1,000 meters and behind buildings.

At MWC Barcelona next week, there will be dozens of analyses on mmWave costs and buildout requirements. Nearly all of them will assume reach of 200-300 meters. That would require at least hundreds of thousands of cells to cover the U.S. and probably millions.

They probably are wrong.

We don't have conclusive data yet, of course. Verizon reports, getting a median gigabit 600 meters with still very early equipment.  "Every variable tested during the trials came out better than assumed." 

Primary details below, The full Signals Research report is for sale (not cheap,) They have a short but interesting video showing the actual tests, but they are keeping

Thanks to Monica Alleven of Fierce for pointing me to this data. She and colleagues Mike Dano & Sean Buckley are among the best.

 

Here's the SR promotion

Key Highlights from this 5G Speed Study

Signals Research Group (SRG) conducted what we believe is the industry’s first independent benchmark study of a 5G commercial test network. We conducted tests in Houston, Texas where Verizon Wireless has a 28 GHz trial network that we believe is now supporting commercial traffic. Samsung is the infrastructure supplier in this market. For this study, we used the Rohde & Schwarz TSMA autonomous drive test scanner to collect downlink performance metrics for the Beam Reference Signals (BRS), including RSRP, CINR, RSRQ, PCI, etc., of the 28 GHz millimeter wave radio signals. With this information, we could also estimate likely end-user data rates for the areas and locations we tested. Although Verizon is currently using the 5GTF specification, we believe the data we collected and the results we conclude from the analysis of the data are equally applicable to the 5G NR specifications, not to mention limited mobility use cases. Based on numerous walk tests and stationary tests involving line-of-site (LOS), non-lineof-site (NLOS) and near-line-of-site conditions, we have a great appreciation for the promises of millimeter wave spectrum. To summarize, millimeter wave signals are far more resilient than we expected, even at distances exceeding several thousand feet. Tree foliage, passing school buses, buildings, parked cars, balding heads, and glass impacted the received signal, but the resultant signals were still capable of delivering meaningful data rates – thanks in part to the 400 MHz radio channel. Verizon can deploy 800 MHz channels in some markets. Who would have thought a millimeter wave signal in an area 100% blocked from the serving cell tower by the surroundings would still be capable of supporting good data speeds? Verizon management is on record for “promising” Gigabit speeds to its serviced customers. We don’t yet share this view with near-term deployments unless Verizon aggressively deploys 5GTF small cells (i.e., brings the consumer and the 5G access point closer together), and/or mounts CPEs in ideal exterior locations, and/or limits its customers to only those customers that it knows live in a location with suitable radio conditions that can support Gigabit speeds.

dave ask

Newsfeed

The 3.3-4.2 spectrum should be shared, not exclusively used by one company, concludes an important U.S. Defense Innovation Board report. If more wireless broadband is important, sharing is of course right because shared networks can yield far more

It does work! Verizon's mmWave tests over a gigabit in the real world. 
The $669 OnePlus 7 Pro outclasses the best Apples and probably the new Galaxy 10 or Huawei P30 Pro. Optical zoom, three cameras, liquid cooling, Qualcomm 855 and more.
Korea at 400,000 5G May 15. Chinese "pre-commercial" signing customers, 60,000-120,000 base stations in 2019, million+ remarkable soon. 
5G phones Huawei Mate 20, Samsung Galaxy 10, ZTE Nubia, LG V50, and OPPO are all on sale at China Unicom. All cost US$1,000 to 1,500 before subsidy. Xiaomi promises US$600.
Natural monopoly? Vodafone & Telecom Italia to share 5G, invite all other companies to join.
Huawei predicts 5G phones for US$200 in 2021, $300 even earlier
NY Times says "5G is dangerous" is a Russian plot. Really.
Althiostar raised US$114 million for a virtual RAN system in the cloud. Rakuten, Japan's new #4, is using it and invested.
Ireland is proposing a US$3 billion subsidy for rural fibre that will be much too expensive. Politics.
Telefonica Brazil has 9M FTTH homes passed and will add 6M more within two years. Adjusted for population, that's more than the U.S. The CEO publicly urged other carriers to raise prices together.
CableLabs and Cisco have developed Low Latency XHaul (LLX) with 5-15 ms latency for 5G backhaul,  U.S. cable is soon to come in very strong in wireless. Details 
Korea Telecom won 100,000 5G customers in the first month. SK & LG added 150,000 more. KT has 37,500 cells. planning 90% of the country by yearend. 
The Chinese giants expect 60,000 to 90,000 5G cells by the end of 2019.
China Telecom's Yang Xin warns, "Real large-scale deployment of operators' edge computing may be after 2021." Customers are hard to find.
Reliance Jio registered 97.5% 4G availability across India in Open Signal testing. Best in world.

More newsfeed

----------

Welcome On Oct 1, 2019 Verizon turned on the first $20B 5G mmWave network with extraordinary hopes. The actual early results have been dismal. Good engineers tell me that will change. Meanwhile, the hype is unreal. Time for reporting closer to the truth.

The estimates you hear about 5G costs are wildly exaggerated. Verizon is building the most advanced wireless network while reducing capex. Deutsche Telekom and Orange/France Telecom also confirm they won't raise capex.

Massive MIMO in either 4G or "5G" can increase capacity 3X to 7X, including putting 2.3 GHz to 4.2 GHz to use. Carrier Aggregation, 256 QAM, and other tools double and triple that. Verizon sees cost/bit dropping 40% per year.

Cisco & others see traffic growth slowing to 30%/year or less.  I infer overcapacity almost everywhere.  

Believe it or not, 80% of 5G (mid-band) for several years will be slower than good 4G, which is more developed.