BT LTE Coverage Open SIgnal 180Fotis Karonis sees everything before that as "proof of concept." He's Managing Director of Mobile and also IT, where he's advancing Software Enabled Networks. He believes BT will be first in Britain, implying the other British companies will be later. He didn't say the "first commercial" cells in 2020 will be many, so his date doesn't conflict with the 2022-2024 plan for volume mmWave from NTT's Seizo Onoe.

He acknowledges that BT still has a long way to go in LTE deployment. While they claim 99% population coverage with LTE, these maps from Open Signal suggest they are not using a robust measure of actual coverage. The map above is based on tested connections to LTE. Below, the 4G and 3G maps are side by side. Note how many places 3G is working but you can't even get 4G. That's strongly suggestive of either a crowded LTE network or optimistic coverage estimates.  

Karonis is strong on the need for reliability, particularly as BT adds security services as customers.

Stanford Professor Paulraj has been particularly strong on the need for reliability as we become more dependent on telco networks. Everyone agrees that's critical for 5G, but we'll see whether networks are built to that standard.   

In this video interview with Justin Springham of Mobile World at HWMBBF16, Fotis is clearly talking about mmWave as 5G but not Massive MIMO. At that show, I learned that both Softbank Japan and China Mobile on ordering thousands of Massive MIMO cells, getting 3X to 10X capacity improvements with better to follow. I think if he thought about it, he'd include Massive MIMO in "5G," and make clear when he's discussing mmWave exclusively. Here are the video and the two maps.

BT LTE Coverage Open SIgnal 325BT 2G 3G coverage Open Signal 325

dave askOn Oct 1, Verizon turned on the first $20B 5G mmWave network. It will soon offer a gigabit or close to 30M homes. Thousands of sites are live in Korea; AT&T is going live with mobile, even lacking phones. The hype is unreal. Time for reporting closer to the truth.

The estimates you hear about 5G costs are wildly exaggerated. Verizon is building the most advanced wireless network while reducing capex. Deutsche Telekom and Orange/France Telecom also confirm they won't raise capex.

Massive MIMO in either 4G or "5G" can increase capacity 4X to 7X, including putting 2.3 GHz to 4.2 GHz to use. Carrier Aggregation, 256 QAM, and other tools double and triple that. Verizon sees cost/bit dropping 40% per year.

Cisco & others see traffic growth slowing to 30%/year or less.  I infer overcapacity almost everywhere.  

Believe it or not, 80% of 5G (mid-band) for several years will be slower than good 4G, which is more developed.

-------------------

5G Why Verizon thinks differently and what to do about it is a new report I wrote for STL Partners and their clients.

STL Partners, a British consulting outfit I respect, commissioned me to ask why. That report is now out. If you're a client, download it here. If not, and corporate priced research is interesting to you, ask me to introduce you to one of the principals.

It was fascinating work because the answers aren't obvious. Lowell McAdam's company is spending $20B to cover 30M+ homes in the first stage. The progress in low & mid-band, both "4G" and "5G," has been remarkable. In most territories, millimeter wave will not be necessary to meet expected demand.

McAdam sees a little further. mmWave has 3-4X the capacity of low and mid-band. He sees an enormous marketing advantage: unlimited services, even less congestion, reputation as the best network. Verizon testing found mmWave rate/reach was twice what had been estimated. All prior cost estimates need revision.

My take: even if mmWave doesn't fit in your current budget, telcos should expand trials and training to be ready as things change. The new cost estimates may be low enough to change your mind.