Korea building 230Ted Rappaport pointed me to Jerry Pi's paper from 2011, one of the very earliest contributions to 5G mmWave. Pi wrote An introduction to millimeter-wave mobile broadband systems when was at Samsung. He writes, "The first publication is a patent application in 2010. As you know, Samsung was the first to show a 28 GHz 5G demo to the world in 2013, while most other companies just started to look into this idea. In my view this certainly helped Samsung establish its technology and product leadership in 5G and grow its 5G business."

Samsung's leadership in wireless research is paying off big time, with Samsung now supplying Verizon. Samsung's showcase customer is Reliance Jio in India, now with 225 million 4G subscribers after only two years. Jio and China's 344M fiber home lines connected (not passed) are the two most spectacular achievements in my 20 years reporting broadband.

In 2012, Samsung became true believers in mmWave and put hundreds of engineers to work. (Ted visited and presented to them.) The complexity of chips and networks today is astonishing. An effort like Samsung, Qualcomm, or Ericsson involves thousands of engineers and billions of dollars. 

It wasn't until Ted's paper Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! in 2013 that most of the industry took notice and went to work. Ted's just won an Armstrong Award.

Pi went on to be CTO of Straight Path, which was sold to Verizon for US$3 billion. He did very well and his Linkedin profile now lists him as "retired."

 

 

Mobile communication has been one of the most successful technology innovations in modern history. The combination of technology breakthroughs and attractive value proposition has made mobile communication an indispensable part of life for 5 billion people. Due to the increasing popularity of smart phones and other mobile data devices such as netbooks and ebook readers, mobile data traffic is experiencing unprecedented growth. Some predictions indicate that mobile data will grow at 108 percent compound annual growth rate (CAGR) [1] with over a thousandfold increase over the next 10 years. In order to meet this exponential growth, improvements in air interface capacity and allocation of new spectrum are of paramount importance.

 

dave ask

Newsfeed

The 3.3-4.2 spectrum should be shared, not exclusively used by one company, concludes an important U.S. Defense Innovation Board report. If more wireless broadband is important, sharing is of course right because shared networks can yield far more

It does work! Verizon's mmWave tests over a gigabit in the real world. 
The $669 OnePlus 7 Pro outclasses the best Apples and probably the new Galaxy 10 or Huawei P30 Pro. Optical zoom, three cameras, liquid cooling, Qualcomm 855 and more.
Korea at 400,000 5G May 15. Chinese "pre-commercial" signing customers, 60,000-120,000 base stations in 2019, million+ remarkable soon. 
5G phones Huawei Mate 20, Samsung Galaxy 10, ZTE Nubia, LG V50, and OPPO are all on sale at China Unicom. All cost US$1,000 to 1,500 before subsidy. Xiaomi promises US$600.
Natural monopoly? Vodafone & Telecom Italia to share 5G, invite all other companies to join.
Huawei predicts 5G phones for US$200 in 2021, $300 even earlier
NY Times says "5G is dangerous" is a Russian plot. Really.
Althiostar raised US$114 million for a virtual RAN system in the cloud. Rakuten, Japan's new #4, is using it and invested.
Ireland is proposing a US$3 billion subsidy for rural fibre that will be much too expensive. Politics.
Telefonica Brazil has 9M FTTH homes passed and will add 6M more within two years. Adjusted for population, that's more than the U.S. The CEO publicly urged other carriers to raise prices together.
CableLabs and Cisco have developed Low Latency XHaul (LLX) with 5-15 ms latency for 5G backhaul,  U.S. cable is soon to come in very strong in wireless. Details 
Korea Telecom won 100,000 5G customers in the first month. SK & LG added 150,000 more. KT has 37,500 cells. planning 90% of the country by yearend. 
The Chinese giants expect 60,000 to 90,000 5G cells by the end of 2019.
China Telecom's Yang Xin warns, "Real large-scale deployment of operators' edge computing may be after 2021." Customers are hard to find.
Reliance Jio registered 97.5% 4G availability across India in Open Signal testing. Best in world.

More newsfeed

----------

Welcome On Oct 1, 2019 Verizon turned on the first $20B 5G mmWave network with extraordinary hopes. The actual early results have been dismal. Good engineers tell me that will change. Meanwhile, the hype is unreal. Time for reporting closer to the truth.

The estimates you hear about 5G costs are wildly exaggerated. Verizon is building the most advanced wireless network while reducing capex. Deutsche Telekom and Orange/France Telecom also confirm they won't raise capex.

Massive MIMO in either 4G or "5G" can increase capacity 3X to 7X, including putting 2.3 GHz to 4.2 GHz to use. Carrier Aggregation, 256 QAM, and other tools double and triple that. Verizon sees cost/bit dropping 40% per year.

Cisco & others see traffic growth slowing to 30%/year or less.  I infer overcapacity almost everywhere.  

Believe it or not, 80% of 5G (mid-band) for several years will be slower than good 4G, which is more developed.